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PROBLEM 

Apply the method of stationary phase to the integral defining 
Woodward's time-frequency correlation function X(r,  ß) and in- 
vestigate the usefulness of a particular elaboration of this ap- 
proximation method as a tool for attacking the signal design 
problem,  the latter being the finding of such amplitude a(t) and 
phase 4){t) modulations that a prescribed ambiguity function 
IX(T,  ß)l2  is obtained. 

RESULTS 

The method is heuristic and is applicable to signals such that 
amplitude a(t) varies slowly relative to phase 4)(t) over most of 
the signal duration,   i. e. ,  to phase-modulated signals.   Those 
regions of the r-ß (range-Doppler) plane —except for a small 
neighborhood of the origin—on which the ambiguity function is 
relatively large are easily found.    It is possible to see that by 
introducing finite discontinuities in the instantaneous frequency 
d)'(t), some of the ambiguity volume (the total volume under 
lx(Ti  ß)l    '8 fixed) can be displaced outward and beyond physi- 
cally interesting values of ß.    Further,  the undisplaced volume 
can be distributed in azimuth about the origin.    Hence,  it seems 
possible to approximate the ideal ambiguity function—sharp peak 
at the origin,   small values elsewhere —in this way. 

RECOMMENDATIONS 

The phase modulations arrived at in the later sections of this 
report,  as  well as  any others  obtained in the  same way,   are 
best regarded as constituents of candidate signals.    Additional 
computation—digital, analog, or hand (using Erdelyi's asymptotic 
series) —is required in order to obtain a more accurate repre- 
sentation of the ambiguity function.    Consideration of the accuracy 
which may be attained,   and of the time and effort required, indi- 
cate that the first two are to be preferred over the third. 
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1.   INTRODUCTION 

Beginning with Woodward (Ref, I),  the time-frequency correlation 
function 

■ 2>i0t /** - 2«Ut 
^u(t)ü(t+T)e dt (1.1) 

has played an important role in the analysis of echo-ranging systems 
(Ref. 2 to 7),   Much as been written about this function; Ref. 2 to 4 are 
concerned with its properties,  its relevance,  and its interpretation. 
The symbols in Eq. 1.1 have the following meanings:   the variable of 
integration t has the dimensions of time,   T is related to the range,  B 
is related to the range rate, u(t) is the complex modulation,   i = si—I, 
and the overscore denotes complex conjugation. The appearance of u(t) 
in Eq. 1.1 results from writing the physical transmitted signal s(t) as 

s(t') = Re[u(t,)e2'^tl (1.2) 

where fc  is the carrier frequency and t' is the time, and from treating 
the target as a point scatterer. 

The ambiguity function,   IX(T, ß)|2, has more physical significance 
than X(T, ß),  and the problem presented here is the one of choosing the 
modulation u(t) so that an acceptable surface,  IX(T, ß)|2 versus T and 
ß,  is obtained.   The qualitatively ideal surface is usually taken to be a 
IX(T, ß)|2 which is sharply peaked at the origin and relatively small 
elsewhere.   Aside from the "random" phase-reversal signals (Ref. 3,8) 
and the associated statistical interpretation of IX(T, ß)l2*   it appears 
that a u(t) which yields an ideal IX(T,  ß) I2 has yet to be discovered.  As 
might be expected,  the lack of such an ideal modulation has not proved 
to be crucial. The tactical requirements of the system may admit some 
ambiguity (Ref. 9) owing to the presence of side lobes (additional peaks 
and ridges in the IX(T, ß)|2 surface).   Or it may be possible to resolve 
the ambiguity (1) by observing targets over a sufficiently long period 
of time (Ref. 10) or (2) by transmitting more than one kind of signal 
(Ref, 4).    On the other hand,  it may be desirable or necessary to elim- 
inate all ambiguities on each transmitted signal.    In this last connec- 
tion,  we note that,   since arbitrarily large values of IT I and Ißl are not 
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expected to occur,   it suffices to have IX(T, ß)l    adequately small,   ex- 
cept for the central peak,  only on a rectangular domain of the T - ß 
plane bounded by ±|T|m and ±1 p|m.     The particular elaboration of the 
method of stationary phase that is described below indicates how this 
latter sort of ambiguity function might be approximated in the case of 
a transmitted signal consisting of a single pulse,  as opposed to a pulse 
burst or train (Ref. 4). 

Although there is a theorem due to Sichert and to Wilcox (Ref. 2) by 
means of which u(t) can,  in principle,  be calculated if X(T, ß) is pre- 
scribed,   it appears that there is neither a theorem leading directly 
from IX(T, ß)|2  to u(t) nor a theorem telling anything explicit about a 
possible relationship between the magnitude and the phase of X(T, ß). 
The signal design problem must therefore be attacked by devious means. 

Let us recall that the method of stationary phase furnishes an ap- 
proximate evaluation of the integral 

F(v) =j     g(x)e       'dx (1.3) 

where x,   f(x),  and v are real,  and v is large and positive.     The rele- 
vance of the stationary phase approximation (SPA) to the signal design 
problem is due to the fact that the integral in Eq. 1.1,  as well as the 
Fourier integrals for u(t) and its spectrum U(f),  and the integral ob- 
tained by applying Parseval's formula to the right-hand member of 
Eq. 1.1 can be cast into the form of the integral in Eq. 1.3.    In the case 
of Eq. 1.1,  upon writing the complex modulation u(t) in terms of the 
amplitude modulation a(t) and the phase modulation ${t). 

u(t) = a(t)e 
2«i0(l) 

(1.4) 

we obtain 

where 

X(T,/S) =ftcA(t:T) dt (1.5) 

A(t;r) = a(t)a(t + r) 

*(t.T,ß) = 0(t) - 0(t + T) - 0t 

(1.6) 

(1.7) 

and we have changed to finite limits to agree with the fact that we shall 
be dealing with time-limited modulations: 

  ■MMHMM^aMmiaHMiaHi 
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a(t) = 0; t < ti, t > tj, (1.8) 

The SPA also yields some simple,  auxiliary results that are useful in 
signal design.   It is in this last respect that the application of the 
method of stationary phase described and illustrated here differs from 
previous applications (Ref, 2 to 4,  and 11 to 14). 

After a brief review of the SPA itself (Section 2),  this report de- 
velops (Section 3) inequalities involving T and ß which,  to within the 
SPA,   specify the domains of the T - ß plane on which IX(T, ß)|2 is 
large.1    We call such a domain a side lobe,   since the domain corre- 
sponding to the central peak of IX(T, ß)|2 is excluded from these calcu- 
lations.    It is then ascertained (Section 4),  by means of specific ex- 
amples and some heuristic considerations,  the kind of phase modulation 
d)(t) that results in (1) the displacement of some side lobes outward along 
the (3-axis so that they lie beyond ^lßlm ,  and (2) the distribution in azi- 
muth of those that are contiguous  to the origin.    Finally,  the results 
are summarized and discussed in Section 5. 

2.    THE STATIONARY PHASE APPROXIMATION 

The SPA is applicable to integrals such as are given by Eq. 1.3 

F(w-jreg(x).",,"dx (21/ 

where f(x) and x are real and v is large and positive.   This approxima- 
tion has been used frequently and apparently successfully in the analy- 
sis of physical problems.    It is discussed in many places,  usually as 
the method of stationary phase.    Most of the material that follows 
comes from the monographs by Copson (Ref. 15) and Erdelyi (Ref. 16). 
The basic idea is as follows:  because of the oscillating exponential« 
neighboring contributions of the integrand tend to cancel except in the 
vicinity of a point x, at which the phase vf(x) is stationary [f'(x. )= 0] 
and at the end points. 

Copson assumes that f(z) and g(z) are analytic functions of z (com- 
plex) in a simply connected,   open region D containing the interval I, 

The posribility of doing this his also been noted by Vakmtn (Ref. 3). in connection with cubic phase modaUtkm, 
0(t)ac t'. 



a < x < c.   It then follows that f'(x) has a finite number of zeros on I; 
these are the stationary points of the phase vf(x).    The interval I is pre- 
sumed to be divided into a finite number of subintervals,  in each of 
which f (x) does not vanish,  or f'(x) vanishes only at the left-hand end 
point,  or f'(x) vanishes only at the right-hand end point.    These three 
cases are treated separately,  and the results are as follows: 

If f(x) has no stationary point in a < x < K,  then 

„ ,   v     T"    ,  ^  »"A«) j g(K)      irfdO        e(a) G(v)-L 6(x)e   dx = i^ü)e   -A 
ivf(o)   j e + °(i) (2.?) 

as v -► oo. 

If f(x) has one stationary point in a < x < ic,   namely at x = a, then 

G(l/) = f   g(x)e 
Ja 

ii-f(x) 

= L5iZto)J   g(a)e +0 © (2.3) 

as v -► <», where the upper (lower) signs apply when f"(a) is positive 
(negative). 

If f(x) has one stationary point in a < x < K ,  namely at x = K, then 

f"    ,  ,  MOO , Civ) =Ja   g(x)e dx 

(K)J     e V' 
(2.4) 

as v -»• oo ,  where the upper (lower) signs apply when f"(ic) is positive 
(negative). 

Although these results will suffice for most of the discussion in the 
next two sections,  a more general theorem is useful (1) for those cases 
where either f"(a) = 0 or f"(K) = 0; (2) for establishing that the right- 
hand members of Eq. 2.2 through 2.4 are,  in fact, the dominant terms 
of an asymptotic expansion; and (3) for obtaining more accurate asymp- 
totic approximations.    This theorem is derived by Erdelyi and includes 
stationary points of a more general character.   It is assumed that the 
number of these more general stationary points in the interval I is 
finite,   and that I is broken up as before except that,  for definiteness, 
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f(x) is monotonic increasing2 on a < x < x.     The theorem reads as 
follows: 

/ 

If X. > 0, n > 1; g(x) is N times continuously differentiable for 
a < x < K; f(x) is differentiable and 

f'(x) = (x -a)"'1 U - x)0"1fi(x) (2.5) 

where p,  a > 1,  and fi(x) is positive and N times continuously differ- 
entiable for a < x < K; then 

where 

and 

-"a 
(x - a)       (K - x)       dx = B(I/) - A(l/) 

A(i/)~- Z is^i2ip ZiLiA) e
iri(n+Ä'>/2'Bv-(,1+x)/pei,'f(0) 

„n    n!p        \   p    / e 
n=0 

B(t/) 
^        y    l(n)(0) _ /n + M\    -iridH-MV ?« -(n+p)/o ü.f((c) 

'  n=0     n:(T ^     0     'e 

(2.6) 

(2.7) 

(2.8) 

as v -► oo,  with k(u) given by 

and i(v) given by 

k(u) = giixju      — 

up = f(x) - f(a) 

g^x) = g(x)(x - a)^1 (« - x)""1 

i-u dx 

The notation 

£(v) = g^xlv1-" 25 

v0 =£(«)- f(x) 

N-l 

A(ix) ~ J   a^n^) as P -oo 

' If Kx) is monotonic decreasing, replace i with -i and f(x) with -f(x). 

(2.9) 

(2.10) 

r mi 
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means that 
N-l 

A(v) = 2   aiA(^) + o(0N.,) as w ^ « 

The presence or absence of a stationary point within the interval of 
integration is manifested in the values of p and a.    If there is no sta- 
tionary point,   p = (r = 1; otherwise,   either p or or,   or both,   is greater 
than unity. 

3.   GENERAL CONSIDERATIONS 

The use of the SPA on Eq. 1.5 is now considered in more detail.  No 
loss in generality results from choosing the time origin so that 

We then have 

t! -  - 2 ,   tg - + 2 

a(t) = 0 for t<  -j, t>j 

from Eq. 1.8.   Also, because of the symmetry condition, 

IX(-T,   -0)|  =   \x{T,ß)\ 

we may take 
T > 0 

throughout.   Equation 1.5 then becomes 

-(T/2) 

-T/2 

where 

and 

We note that 

.ß) X(T.ß)=r^MUr)eUm™'ät 
J-T/2 

*(t:T(|3) = 0(t) - 0(t + T) - ist 

A(t;T) = a(t)a(t + T) 

XiT.ß) = 0 for T ^ T 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

■■ I — 



The simplest case obtains when fy{z) and a(z) are analytic functions 
of z(Re2 = t) on a simply connected,   open region D containing the t- 
interval [-T/2,   T/2].    Since this assumption conflicts with Eq. 3.2, we 
have to suppose,   for the purpose of applying the first three theorems 
given in the previous section,  that a(t) is analytically continued to the 
left beyond -T/2 and to the right beyond +T/2.     The theorems of the 
previous section then tell us that the SPA will be a good approximation 
if,   aside from stationary points,  the phase 2Tr4>(t; T,   ß) varies rapidly 
with t compared to A(t; T) on [-T/2,   T/2].     We assume this to be true 
henceforth,   and it then follows from Eq. 3.6 and 3.7 that the phaae 
modulation ^{t) must vary relative to the amplitude modulation a(t) on 
[-T/2,   T/2].    In a specific case,   a factor v can be taken out of 
2iT4>(t; T,   (3).     These theorems also tell us that the ambiguity function 
|X(T,   ß)l2 will be larger by a factor v when the stationary point(s) lie 
within the interval of integration; i. e. ,  when 

T T 

with the stationary point tj satisfying 

L    at     Jt=tj      L Jt=tj 

H ence,   tj is a function of T and ß,   and Eq, 3.9 may be written as 

The equations 

-TsMT,/3)s:--r 

Mr./J) = --i- 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

define the loci,  ß versus T,   corresponding to a stationary point at the 
ends of the interval of integration [-T/2,  (T/2) - T].    According to 
Eq. 3.10,  these loci are given by 

^ = [0/(t)-0'(t + r)]t=_T/2Sf1(T) (3.13) 

and 

0 = [0'(t) -0'(t+T)] Hf2(T) (3.14) 
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We shall refer to fi (T) and f2(T) as the terminal curves. When the 
stationary point tj is within the interval of integration, the loci are 
given by 

ß=[0'(t)  -0'(t+T)] ,     -|<tj<f -T (3.15) 

from Eq. 3.10.    It is obvious that all these loci3 pass through the origin, 
T = p = 0.    They also intersect at T = T,   as may be seen by observing 
that there is then only one possible value for tj,  namely tj = -T/2. 
Collectively,  these loci constitute the side lobe,  the boundaries of 
which will be either certain members of the family of loci which en- 
close all the others or they will be envelope curves. 

In this connection, we consider next the differential 

dß - [0"(t) - 0"(t +7)]^= [dS*{t
d*'ß)]t.t. dt, (3.16) 

which,  for fixed T,   gives the displacement dß involved in moving from 
one locus to another which is close by.   By looking at the sign of 
[924>(t; T, ß)/9t2]t=tj as the stationary point t: moves into the interval of 
integration, we shall be able to see how the loci (Eq. 3.15) are dis- 
posed relative to the terminal curves fi(T) and f2(T).   Clearly,  the 
terminal curves and the comments relative to Eq. 3.15 apply to any 
other stationary points which may exist in addition to tj.    Hence,  the 
extent of the side lobe may be determined in this way regardless of 
how many stationary points are present.   However,  the existence of 
more than one stationary point may influence the magnitude of X(T, ß) 
on the side lobe:  by applying Eq. 2.3 and 2.4 to Eq. 3.5,  we obtain 

with t. = tj(T,   ß) a solution of Eq. 3.10.    It also has the effect of making 
the SPA less accurate as T -* T from below and the multiple stationary 
points coalesce (a circumstance which is not considered important,   in 
view of Eq. 3.8). 

The simplest situation obtains when 92<t»(t; T,  ß)/9t2 is independent 
of t and has the same sign on 0 < T < T; say 

^iijn>0, 0<T<T (3.18) 

'the fact that a parametric family of curves is generated by varying the stationary point was noted by Sorkin 
(Rcf. 13) but not developed in detail. 
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(We note in passing that 924>(t; T, ß)/9t2 is always independent of ß. ) If, 
in addition, 

f1(r)< f8(T).   0<T < T (3,19) 

then the side lobe is specified by 

fi(r) * ß £ falT),  0<T< T (3.20) 

an inequality which is equivalent to Eq. 3.9 and which occurc in Ex- 
ample 1 in the next section. 

The question arises whether the inequality sign could be reversed 
in either (3.18) or (3.19)»   for in that event there would be no side lobe 
at all,   a desirable state of affairs.   However,  this would lead to the 
contradiction that fi(T) and fafx) are not members of the same family of 
curves,   there being no way of getting from one to the other by varying 
tj.    The possibility that one of the signs may be reversed over just 
0 < T < T/2,  for example,   may be disposed of on the same grounds. 

The more complicated cases arise when 924>(t; T, P)/9t2 depends 
upon both t and T.    An enumeration and analysis of these has not been 
attempted here since the general procedure seems clear.   Starting 
with fi(T) (the member of the family of loci corresponding to tj = —T/2), 
the evolution of the remaining members is ascertained by repeated ap- 
plication of Eq. 3.16 as tj moves from -T/2 to T/2 - T.    If more con- 
venient,   it is possible to start with fjir),  in which case tj evidently 
moves from (T/2) - T to -T/2,  and dtj in Eq. 3.16 is negative.    It is 
not uncommon for 924>(t; T, P)/9t2  to change sign,   perhaps at t, 
-T/2 < $ < T/2 - T,    If Eq. 3.19 holds,  and the change in sign is from 
plus to minus,  then the side lobe will be given by 

where 

f^T) ^0 *: f(T),   0<T < T 

f(T) =[0'(t) - 0'(t  hT)]tm* 

(3.21) 

is the equation for the envelope curve (Ref. 17), 
below are instances of this sort. 

Examples 2 and 3 

I 
Suppose now,   contrary to the assumption following Eq. 3.8,  that 

the amplitude a(t) has finite discontinuities at t = ±T/2.    Such a case 



■ -'-^.- "«   r- 

L, 

is of interest as a mathematical idealization of certain physical wave- 
forms.    Let h(t) be defined by 

h(t) = a(t)for \t\<^ 

h(t) = analytic continuation of a(t) for |t| ^ — (3.22) 

Then, by using 

A(t;T) = h(t)h(t + T) (3.23) 

in place of Eq. 3.7,  the previous results are again obtained. 

When there are finite discontinuities in a'(t), ^(t), $'(t)t  etc. ,  the 
interval of integration [-T/2,  (T/2) - T] is partitioned so that the 
points of discontinuity coincide with the limits of the integrals making 
up Eq. 3.5,   and then analytic cc  tinuations of a(t) and ${t) are intro- 
duced in order that the theorems of Section ?, can be applied to each of 
the constituent integrals.   Of course,  the analytically continued func- 
tions have a strictly formal role; all that needs to be done in a calcula- 
tion is to avoid integrating through a discontinuity.    Results similar 
to Eq. 3.11,   3.13,   3.14,   3.15,  and 3.16 then apply for each segment of 
the original interval [-T/2,  (T/2) - T]. 

In the case of Erdelyi's  theorem (Eq. 2.6 through 2.8),  neither 
a(t) nor $(t, need be analytic.   It has not been possible to see whether 
this weaker hypothesis has any desirable consequences insofar as the 
signal design problem is concerned,   except that the theorem gives a 
finite result in some cases in which Eq. 2,3 and 2.4 do not.   In particu- 
lar,  on the ß-axis, 924>(t; T, ß)/9t2 vanishes identically,  and 

\(T,ß)   -co 
ß-0 

according to Eq. 2,3 and 2.4,  while Erdelyi's theorem gives a finite 
result,  which,  for the case of a rectangular a(t),  turns out to be exact. 
This circumstance is useful in a supplementary way in that degenerate 
side lobes can be defined (Eq. 4.6 and 4.7 below). 

The SPA fails completely at the origin because 4»(t; 0, 0) = 0.    But 
it is known from other considerations that | x I2 attains a maximum 
there.    Also,  its behavior in a small neighborhood of the origin can 
be studied by means of a Taylor series expansion. 

10 
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Thus,   our use of the SPA,   principally to map out those regions of 
the plane on which IX(T, ß)l2 is large,  excludes the central maximum 
and a narrow strip about the ß-axis.   Along the ß-axis,   one can use 
either Erdelyi's theorem or the exact equations 

X(T.ß)=f_l  [a(t)]2 e-2'*" dt = JJ  A(£) A(f+/J)d£ (3.24) 

which follow from Eq. 3.5 and Parseval's formula.   Here,  A(f) is the 
spectrum of a{t). 

It is natural to inquire into the possibility of attacking the signal 
design problem synthetically within the present context,   i. e. ,  by 
specifying the bounding curves of the side lobes,  then working toward 
the modulation,  Eq. 1.4.   It is easy to convince oneself that this pro- 
cedure is ambiguous.   In particular,  the integrations with respect to t 
that are necessary lead to functions of T which may be specified arbi- 
trarily.   Hence,  it seems more satisfactory to work toward the place- 
ment of the side lobes by trial and error. 

4.   SOME EXAMPLES 

In this section,  the elaboration of the SPA described above is ap- 
plied to several different phase modulations 6(t).    The amplitude 
modulation a(t) is unspecified,   except that it is assumed to be such 
that the theorems of Section 2 are applicable,  and to vary slowly com- 
pared to (i)(t) over the duration T of the signal.    The supposition that 
IX{T, p)|2 is large on the side lobes (stationary points within the in- 
terval of integration) and small elsewhere (except for the central lobe) 
will then be admissible.   For convenience,  we introduce the function 
e(t; T): 

®(t;T) = 0'(t) - 0'(t +T) (4.1) 

The two common modulations. 

and 
0(t) = c (monotone) 

0(t) = jcata (linear FM4) 

(4.2) 

(4.3) 

r 

Frequency modulation. 

11 
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where c and c2  are constants,  lead,   respectively,  to the equations 

0=0 (4.4) 

and 

a*(t;T.g) 
at 

W(t:T,ß) 
at -c2T  - ß = 0 (4.5) 

for the stationary point,   Since t does not appear in these equations, 
there are no stationary points of the ordinary kind,  and Eq. 2.3 and 2.4 
do not apply.   On the other hand,   Erdelyi's theorem yields a finite re- 
sult,  which,   it turns out,  is exact for a rectangular a(t).   Now,  in the 
case of a rectangular a(t),  IX(T, ß)|2  decreases in directions orthogonal 
to the lines 

and 

ß = 0 (monotone) 

ß = -csT (linear FM) 

(4.6) 

(4.7) 

It is,  therefore,  not unreasonable to consider that these equations con- 
stitute a degenerate sort of side lobe. 

Example 1. 

A slightly more complicated phase modulation is 

0(t) - ~ cat
3 + | cgt3 (4.8) 

which may be called linear plus quadratic FM.   The term linear in t has 
been omitted because it has no effect on IX(T, ß)|2.   We have 

QiUT.ß) = [2 c2t3 + J es t3J 

[j c3(t + T)2 + I c3(t + r)3] - ßt (4.9) 

^Hi = -[c3T2 + (c2 + 2c3t) T + ß] 

and 

12 

at 

®(t;T) = -[c3T3 + (ca + 2cat)T] 

aa*(t;r.fl) 
at2     ~   2C3T 

(4.10) 

(4.11) 

(4.12) 
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From the equation 

at 
= o 

we find that there is just one stationary point tj,   given by 

tj = -J-Z (c3Ts + csT + ß) 

I'he terminal curves f^r) and i^i^) are given by 

fi(T) =[®(tj;T)]t._T/2 

and 

= -c3[r+i( £2. 
C3 

(4.13) 

)]'♦*(*- Tj' ,4.U, 

^[-r(t+T)]3-?^ + T^        <415' 
and the remaining members of the family constituting the side lobe by 

2        *       2      ■ (4-l6> ß = -CgT2 - (cs + 2c3t3)T,      ?< t, < ? -  T 

Suppose,  for definiteness,   that 

C3< 0, ^ - T> 0 
C3 

(4.17) 

The loci of the terminal curves then are as sketched in Fig. 1.   On the 
interval  0 < T < T,   fifr) < iii-r),   and from Eq. 4.12  and 4,17, 
92<I'(t; T, ß)/8t2 > 0.   If Eq. 3.16 is now presumed to be applied repe- 
titiously,   starting from tj = -T/2 and the curve f 1 (T),  we can see that 
the inequality (3,20) applies,   and that the side lobe of IX(T, ß)l2 for 
T > 0 is as indicated by the shaded region.    The loci (4,16) lie within 
this region on the interval 0 < T < T, 

For convenience,   such a diagram is called an ambiguity diagram 
here.    The part for T < 0 is obtained by reflecting the shaded region in 
the origin (see Eq. 3.3).    The central lobe is not shown. 

Example 2. 

In this example,  we take 

0(t) - " ct4 (4,18) 

<« 
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FIG. 1. Ambiguity Diagram for Linear Plus Quadratic FM, Eq. 4.8; T > 0. 
|x(r, ß)\* is large on the shaded region. 

which may be called cubic FM,  and for which the following results are 
obtained: 

♦ (t:T,ß) =^ct4 - ^c(t +T)4 - ßt (4.19) 

^(t
>
;T'^) = -cT(3t8 + 3tT + T2) - ^ 

ot 
(4.20) 

and 

0(t;T) = -crOt2 + 3tT +T2) 

g!*Mx&l=-3CT(2t-hT) 
at3 

From Eq. 4.20 it is seen that there are two stationary points, 

'.=-HV-Rf) 
The terminal curves are 

f1(r) = [0(tJ;r)]tj._T/2 = -cT[(T-f)%3(^)2] 

£8(T) = mh'.r)]^^ - -cr[(T - ^)2 + 3 (^)2] 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

14 
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Since the loci of fj (T) and £2(1") coincide and 92<f>(t; T, ß)/9t2 depends 
upon t,  the ambiguity diagram for this example will have a character 
entirely different from that of the previous case.    For use in Eq. 3.16, 

3cT(T - T) 
L        dtj2       Jt.--Ty 

[ZMtlLJl] = .3cr(T - r) 
L dtj2 Jt. = T/2-T 

Taking 
c > 0 

(4.26) 

(4.27) 

(4.28) 

and referring to Eq. 3.16 and 4.26,  it is found that,   as a stationary 
point moves from -T/2 into the interval [-T/2,  (T/2) - T],  the loci 

/3 = [0(t;T)]t=t   = -cT(3t1
2 + 3tjT +T3).   -^<ti<j-T        (4.29) 

are displaced upward from fi(T).   Similarly,   Eq. 3.16 and 4.27 reveal 
that,  as a stationary point moves from (T/2) - T into the interval 
[-T/2,  (T/2) - T],  the loci (4.29) are,  again,   displaced upward from 
fI(T)[ = f2(T)].    It is therefore necessary to determine the envelope 
curve f (T) corresponding to the solution t of 

S21>(t;T.g) 
3t2 

By inspection,  this solution is 

-3cT(2t + T) 

2 

from which 

and 

f(T) = [®(t;T)]    A=  -^T
3 

p^>(t;T,g)j 
A 

- 6CT < 0 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

It follows that the side lobe is specified by 

fx(T) ^ /3 s f(T),   0< T < T (4.34) 

The ambiguity diagram for T > 0 and with the central lobe excluded 
appears in Fig. 2. 

tl 
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FIG. 2. Ambiguity Diagnm for the Modulation of Eq. 4.18, Cubic FM. 

It may be worth noting that explicit use was not made of the expres- 
sion for the stationary points given in Eq. 4.23.    That equation is in- 
cluded only for completeness; were IX(T, ß)l2 to be calculated on the 
side lobe,  it would be needed for substitution into Eq. 3.17.   Similar 
comments apply to Eq. 4.13 in the preceding example. 

Example 3. 

Because the case of sinusoidal FM 

0(t) = Cj sin cgt 

is somewhat awkward to discuss for arbitrary values of C2,  a specific 
and convenient value is assumed: 

<P (t) = cj sin 2ir — 

From this there follows 

t t + T 
♦ (t;T,/3) = C! sin 2ir — - Ci sin Zff —^-  - ßt 

9»(t;T./3) _ 41^ 
dt 

T _     2       . 
sin ff — sin 2ir ~^— - P 

®(t;T] 
4rrci 

'     * sin v — sin 2n 
T 

t + 

(4.35) 

(4.36) 

(4.37) 

(4.38) 
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Mr) = [0(tJ;T)Jt =_ 
T/2 

Zffc, 
[1 + c0s2ff(?-j)] 

^--[©(t^T)]       _r= -fx(r) 

ö^it^.g) _ „ /jr\ s„ 
dt£ (Y)   CI sin ^ x COS 2: -I 

and 

L      stj2     Jt^-T/2       MT/ T 

L Ötj2 Jt^T/2-r       I- Ötj2 Jtj-T/2 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

Since the equation for the stationary points,   9*(t; T, ß)/8t = 0,   is 
transcendental,   the evaluation of the ambiguity function would be diffi- 
cult in this case.    The ambiguity diagram can,  of course,  be deter- 
mined with less effort. 

From Eq. 4,39, 4.40,   4.42,  4,43,  and 3,16, we can construct the 
preliminary diagram shown in Fig. 3 where,  for definiteness,  we have 
taken 

c, < 0 (4.44) 

The arrows in Fig. 3 indicate the directions in which neighboring 
members of the family of loci making up the side lobe are to be found. 
The equation for these loci is 

4ffc t,+; 
0 = [0(t;T)]t=t     : ^ sin n ^ sin 2ir —^A    -7<tj<y-T        (4.45) 

The points Pj   and P2   seem to have a sort of singular character,  and 
we put T = T/2 in Eq. 4.45 to find ort what happens there.    This gives 

0=^1 cos 27^.    -T<^<0 (4.46) 

which tells us that the point P1 moves downward to P2 as the parameter 
tj moves through its allowed range. 

17 
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FIG. 3. Displacements From the Terminal Curves Corresponding to Small 
Increments in the Parameter tj (Stationary Point); Sinusoidal FM of Eq. 4.35. 

In order to elucidate matters further, we look for the values t at 
which 824>{t; T, ß)/9t2 vanishes.   By so doing,  the envelopes of the loci 
(4,45) can be determined.   It is sufficient to look at the time-dependent 
factor in Eq. 4.41.    This vanishes when 

t = — I (2m + 1) — - T I , m = integer or zero 

By combining this with 

(4.47) 

.|<t<X-r 

then using 0 < T < T (Eq. 3.4 and 3.8), we arrive at 

|2m + l| < 2(l -^j, m = 0,   ± 1,   ±2, (4.48) 

This inequality has the solutions m = 0 or -1 for 0 < T < T/2, and no 
solutions for T/2 < T < T. Upon using these results in Eq. 4.47, then 
substituting into Eq. 4.41,   it is found that 

a!*£H. = 0at{ = ±X.I, „.T<1 

5!^liM.|<r<T (4.49) 
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Hence, for T/2<T< T the sense of the displacements shown in Fig. 3 per- 
sists throughout the allowed interval for tj. For 0< T< T/2, the envelope 
curves are found by substituting t = ±T/4 - T/2 for tj in Eq. 4,45: 

MT) =  -—^T sin IT — 

4(T)  =   -fi(T) (4.50) 

The sense of the displacements for 0 < T < T/2 shown in Fig. 3 reverses 
at these curves. 

The results may now be combined so as to obtain the inequalities 
specifying the side lobe, 

f2(T)M ^(T),  f ST ^ T (4.51) 

and the corresponding ambiguity diagram,  shown in Fig. 4.   As before, 
this diagram is for T > 0; the complete diagram,  except for the central 
lobe,   may be obtained by inversion in the origin. 

FIG. 4. Ambiguity Diagram for the Sinusoidal FM of Eq. 4.35. 

In the examp        considered thus far,  the phase modulation ^(t) 
satisfied the hype    eses of the theorems stated in Section 2,   i. e. , 4>{z)i 
with Rez = t,  was analytic on an open,   simply connected region 
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containing the t-interval [-T/2,  T/2].   In each case,  it was found that 
the ambiguity function IX(T, ß)l2 had side lobes connected to the origin 
and extending outward to T = ±T.   The discussion in Section 3 following 
the inequality (3.20) indicates that this sort of result will always be 
obtained. 

We are thus led to consider modulations <j)(t) which are not analytic 
as a possible means to obtain an ambiguity function all or part of whose 
side lobes are displaced outward beyond the domain of values of T and 
P which are expected to occur in practice.    As pointed out in Section 1, 
such a IX(T, ß)l2 would be a desirable approximation to the ideal. 

Example 4. 

To this end,   let. us consider the modulations given by 

a(t) =0,   t < 0,   t > T (4.52) 

<t,(t) = 

<t>,(t),     o^t<I 

4,2(t),      T<t^T 

(4.53) 

<Mt) = Cjo + Cnt + ^c^t2 +-Ci3t3 

1 2      1 3 
«t>2(t) = c20 + c21t + 7 c22t    +~c23t (4.54) 

I 

The origin of time has been shifted because a certain unifoimity in 
some of the expressions which follow is thereby attained.   We con- 
tinue to take T > 0.    The sketch in Fig. 5 may be helpful in determining 
the subdivisions of the interval of integration [0,   T - T] .   Referring 
also to Eq. 1.5,  we have for 0 < T < T/2, 

MT, „I =/"'""    AH .T ,<■"'•"-■"<» 

+    f"     A,r.r,o!"'>''(,i''«'dttf
T"'All;Tle

2'1^(,;'-"dt (4.55) 
J(T/2)-T JT/2 
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T 
2 

0(t + T) 
T 

0   <T<r 

-01 0S 

T  ^       ^  

r-T r    T-T 

FIG. 5. Aid for Determinatioa of Limits in 

Eq. 4.55. 

and for T/2 < T < T, 

X(T^)=Jo    A(t;T)e    ^ dt 
(4.56) 

Here,   the functions «^p   etc.,   are given by 

*u(t:T,/3) = 0i(t) -Wt+T) - ßt 

- - cur + \ c18(2tT + r=) + } c^Ot^T + 3tr» + r
3)]-^t        (4.57) 

^(f.T./S) = 0i(t) - 08(t + T) - ^t = (cxo - cao) + (cxl - cai)t 

+ \ (cia - caajt8 + 3 (c13 - CaaJt3 

- [c^T + \ ca2(2tr + r
a) + I ca3(3rT + 3^ + T3)] - ßt       (4 .58) 
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*aa(t;r,ß) = 0a(t) - 08(t + T) - j8t 

^wT-^^Mi^iM^,, um : 

= "[caiT + - CaalZtT + T2)  + | CggO^T + 3tT3 + T3)] - ßt       (4. 59) 

and,  as before. 

A{t;T) = a{t)a(t + T) (4.60) 

Were the calculation of IX(T, ß)!2 to be done completely,   it would be 
necessary to take their relative phases into account when adding up the 
three terms of Eq. 4.55.   This raises the possibility of contriving a 
destructive interference.   However,   such an endeavor would succeed 
only if the constituent side lobes were coincident,  which is unlikely, 
and this course will not be pursued here.    Since the functions ^>n{t; r, ß) 
and $22(t; T» ß) have the same character as the function<|)(t; T, ß) pre- 
viously dealt with,  the side lobes contributed by the first and third 
integrals in Eq. 4,55 will be similar to those encountered before,   ex- 
cept that they will extend outward from the origin only to T = T/2.    The 
second integral in Eq. 4.55,  as well as the integral in Eq. 4.56,  offers 
the possibility of yielding a different kind of result.   For each of these 
integrals we have,  from Eq. 4.58, 

&&&11 ._ [(cu . C31 . ^ . c^] 

+ (cia - caa - Zca3T)t + (c^ ■   ca3)t2] - ß (4.61) 

(4.62) 

and 

  Op—     - (cia - caa - C33T) + 2(c13 - ca3)t 

Starting with these two equations and proceeding as in the previous ex- 
amples,  we want to see whether the constants C|j   can be chosen in such 
a way that the side lobe corresponding to Eq. 4.56 is displaced outward 
along the ß-axis beyond the maximum expected values ±lßlm .   If it is 
possible to do this,  then,  to within the SPA,   the T - ß plane will be 
effectively free of ambiguity for T > T/2.   In view of the remarks above 
concerning interference among the terms of Eq. 4.55,  we should simi- 
larly try to displace the side lobe corresponding to the second term 
there. 

(m      A(t;T)e2'i^(t;T'',)dt (4.63) 
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This displacement of side lobes involves an additional benefit which is 
due to the fact that«  to within the narrow-band approximation, the 
volume under the IX(T, ß) I2 surface is independent of the waveform and 
depends only upon the signal "energy" E: 

//-I lx(T./3)|adTd^ = /JT    |u{t)|a|u(t +T)|adtdT*(2E)a       (4.64) 

4   * 

Hence,   any volume moved from within to without the domain of physi- 
cally interesting values of r and ß will diminish that which remains. 

It turns out that the number of constants q, (i,  j = 1, 2) can be re- 
duced,   so as to simplify the algebra, without jeopardizing the result 
sought.   It is noted first that the Cj0 enter only in Eq. 4.58, and that 
these constants will therefore play no role in the displacement of side 
lobes.   Stated otherwise,  finite discontinuities in the phase modulation 
(j)(t) are irrelevant to the displacement of side lobes.   But since a dis- 
continuity in (j)(t) is nonphysical anyway, the Cj0 will be retained for the 
purpose of keeping <fy(t) formally continuous.    The cu will be retained 
for the purpose of studying the effect of a finite discontinuity in 4>'(t), 
the instantaneous frequency, noting that such discontinuities seem to 
be in keeping with fundamental limitations upon the signal.   Of the re- 
maining constants,   either the c^ or the c^ can be put equal to zero 
without prejudicing our objective.   Under the second of these alterna- 
tives,  the simpler theorems of Section 2 are not applicable because 
d24>11(t; T, ß)/9t2 and a24>22(t; T, P)/dt2 vanish identically,  and the side 
lobes associated with ^(t; T, ß) and<I)22(t; T, ß) manifest themselves 
only as straight lines,  as in Eq. 4.7.   So, for the present we put 

cxa = caa = 0 

The alternative is consiJered in the next example. 

Equations 4.61 and 4.62 now read 

(4.65) 

a*ia(t;T./3) 
at 

= [(en - eg! - CaaT2) 

2c23Tt + (cX3 - cgaH2] - ß = 0ia(t;T) - ß (4.66) 
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and 

^i2(t;T.^)_ 
g s -       ^^23"   T  ^(C13   -   C23)t 

The terminal curves associated with Eq. 4.56 are given by 

f^(T)   = [S^U^T)]     0 = CU   -  cSl  - c23Ts 

(4.67^ 

(4.68) 

filV) = [QiadilT)]^.,   =   c13(T - T)2 + (cu - c21 - cS3Ts)      (4.69) 

with T/2 < T < T,   and those associated with Eq. 4.63 are given by 

gil)(T)=[ei8(tJ:T)]t.=T/2_T = c^T - ^)  + (cu - cai - caa-^)      (4.70) 

gg>(T) = [@18(t4:T)]      /2 = -c^^+yf + ^-c^+c^^)        (4.71) 

with 0 < T < T/2.    These curves are sketched in Fig. 6 and 7 under the 
additional conditions 

cias < cja < 0 

bi + (c1a- cSa)(^)   2 1^1. 

(4.72) 

(4,73) 

where,  for convenience, we have put 

bi = cu  " c81 (4.74) 

The shaded regions (side lobes) are determined as before by the be- 
havior of [824>,2(t; T, P)/9t2],= t.,   Eq. 4.67,   on the appropriate t- and 
T-intervals. 

The inequality (4.73) requires that the frequency <j)'(t) be discon- 
tinuous at time t = T/2,   To see this,   suppose to the contrary that 
continuity obtains,  ()>,'(T/2) = <t>2(T/2),    Then 

bi = cii " cai = -(c13 - CS3) ^"Y/ (4.75) 
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bx + c 

FIG. 6. Side Lobe Corresponding to Eq. 4.S6. 

ß 

I   gilV) 

bl   +C13 (I)' ca3 

bi + (cia - c») (X| 

FIG. 7. Side Lobe Corresponding to Eq. 4.63. 
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in which case Eq. 4.73 is not satisfied,   and the point P in Fig. 6 coin- 
cides with the origin.    If the required jump in frequency is denoted by 

(Af)12, 

(AOis = ^(1)  - ^ (7) =  " W  - (c13 - caa)^) 

and, upon imposing Eq. 4.73, 

(^)i2
s -li3|. (4.76) 

Having seen the effect of continuity in frequency, we may now put 

cu = cai = 0 (4.77) 

Upon combining previous results,  we have 

0(t) 

1 T 
0x11) = Cio + 3 cl3t3,   0*t*j 

(4.78) 

i c,-t
3. ? ^ t s T I 0a(t) = cao + 3 csa4 •   2 

with c10 and cM chosen to ohtain ccntinnity in phn8e a. t . T/2.  and with 

0,3 and C23 satisfying 

<c„<0 (4-79) 

l U 

C23<   C13 

(cla - caa) (If ^ 101. (4.80) 

The side lobes corresponding to the first and third integrals in 
Eq. 4.55,   i. e. ,  to ^JJ and <l>22,  are also of interest.   By previous re- 
sults,   and under the conditions (4.79)..  they appear as sketched in 
Fig. 8.     The bounding curves are again arcs of parabolas.    The fact 
that the two lobes do not overlap is a desirable state of affairs,   since 
the ambiguity outside the central lobe of IX(T, j3)l2 but within the region 
physically interesting values of T and ß tends thereby to be reduced. 
The complete ambiguity diagram (for T > 0,  and without the central 
lobe) is obtained by superposition of Fig. 6 through 8,  with b, now equal 

to zero. 
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f. 

ß 

-3 caa 

-eis 

FIG. 8. Side Lobes Corresponding to Pint and Third Terms of Eq. 4.SS. 

Example 5. 

The alternative (and possibly more practicable) choice of the con- 
stants cjj,  cjj discussed just prior to Eq. 4.65 is now discussed.   At 
the same time,  we shall subdivide the signal duration T into more 
parts (four) with the intention of displacing more of the ambiguity vol- 
ume beyond ±lßlm,  and of distributing in azimuth those side lobes that 
are connected to the origin.    Thus,  we have 

0i(t) = Cio +|ciat3.      0«t^- 

0(t) = 

0a (t) = C20 + least2.     ^ * t *-j 

T 3T 
0a{t) = c» + 2 cat3,     ^ * * s — 

04(t) = c40 +1 c^t2. ^J s t £ T 

(4.81) 
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the constants ci0 being chosen so as to make the phase modulation 0(t) 
continuous.    This <t)(t) leads to the functions 

*n(t;T.^) = 0^0 - 03(t + T) - /3t 

EiulLilil) = .i(t) . 0'j(t +T) . ß= Ci8t _ Cj2(t +r) - ß 

©ult;!) = c^t - cja(t + T) 

and 

öt2 
:
18   "   CJ2 

(4,82) 

(4.83) 

(4.84) 

(4.85) 

where i < j and i,  j = .1,  2,  3, 4.    The calculations divide naturally into 
four groups corresponding to the r-intervals, 

T T 
(i-   D^TSi^ 

of which only the first is considered in detail. 

(4,86) 

The interval 0 < T < T/4 involves the following phase functions and 
limits: 

k k 

* ii 

* 

* 

Zc 

33 

*. 

T 
4 

T 
2 

3T 
4 

T 

T 
T"7" 

3T 

T - T 

* is 

*; S3 

T 
I'7 

T 

A 3T 

T 
4 

T 
2 

3T 
4 

(4.87) 

The contribution of each of these to X(T, ß) is given by the integral 

f*2 A(t;T)e2"i*«(,:T''J)dt (4.88) 
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The correctness of (4.87) and (4.88) may be verified by means of a 
sketch similar to Fig. 5. 

The phase functions 4>ü correspond to linear FM and lead to the de- 
generate side lobes. 

ß = -c^r (4.89) 

(see Eq. 4.7 and the attendant discussion. )   It turns out that we can 
choose two of the c^  to be negative (and unequal) and two to be positive 
(and unequal).    By so doing, the ambiguity volume near the origin will 
tend to be distributed in azimuth,   rather than concentrated somewhere 
so as to result in a prominent ridge or peak. 

The side lobes corresponding to the phase functions «fy,,  i < j,  can, 
at the same time,  be displaced outward beyond ±lplm .    The terminal 
curves are given by 

fiV(T) = [0n(t;T)]ti fr/4- 

fif(T) = [8u(t:T)]t- 

Under the conditions 

IT/4 

iT 
= -CiaT + (cla - Cfs) — 

iT 
= -CjaT + (cia - cja) — 

and 

ci8 < 0»  caa < 0»  ess > 0,  043 > 0 

(cw - c«)^ l/H. 

(c« - ca) —s   |/8|. 

(4.90) 

(4.91) 

(4.92) 

(4.93) 

Eq, 4.85,   4.89,   and 4,90 yield the partial ambiguity diagram sketched 
in Fig. 9.    The dashed lines are the loci of Eq, 4,89; the dotted lines 
represent the continuation of the displaced side lobes into the next 
interval,   T/4 < T < T/2, 

The remaining r-intervals involve equations similar to those con- 
sidered above.   Only one additional condition, 

CaeY s  '^ 'l" (4.94) 
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I IG. 9. Partial Ambiguity Diagram for the Modulation (4.81) Under the Conditions (4.91) 

Through (4.93). The remaining side lobes lie below -\ß\m. 
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is required to insure that the remaining side lobes are outside the 
range of physically interesting values cf ß,   There are three«  they all 
lie below ~lßlm.  and each has the character of the lowermost sid   lobe 
shown in Fig. 9.   except that it is displaced to the right by one or two 
multiples of T/4,    The area of the displaced side lobe ♦y,  i < j,  is 
Ic» - c1,|(T/4)2. -i2 J2I 

For the case of an a(t) which is nearly rectangular and normalized 
to unity,  A(tj; T) « 1/T,  and the displaced ambiguity volume computed 
according to Eq. 3.17 under the assumption that the side lobes are dis- 
joint is easily found to be 3/8 of the total (unity).   If the number N of 
subdivisions of the signal duration T is decreased to 2, the displaced 
volume is 1/4; if N is increased to 8,  it is 7/16; and if N is increased 
indefinitely,  it tends toward 1/2.   It turns out that the fraction of the 
displaced side-lobe area which lies to the left of T = T/2 increases as 
N increases.   Hence,  an A(tj; T) which decreased with increasing T 
would result in a greater displaced volume. 

The question of whether other phase modulations will yield results 
which are more favorable in the sense of displaced ambiguity volume 
has not been pursued. 

Example 6. 

0.(t) 

«I (t) = exo + | cxat3,   0 s t s ^ 

03(t) = es, + j cagt2, ^ t s T 

(4.95) 

r 

Although the finite jumps in the instantaneous frequency ^'(t) which 
were involved in the previous two examples do not seem to violate any 
fundamental restrictions upon the signal,  they are likely to be difficult 
to realize in practice.   It is therefore proper to ascertain the conse- 
quences of replacing the jumps by continuous,  rapid transitions.   To 
this end,  we consider the modulations 

which will be made to have a frequency jump at t = T/2,  together with 
the modulation 1 
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0b(t) = 0a (t) = cao + cait + - caat2, 

03(t)  =   Cao  + - Cast2, 

o*t*T-f 

T T 
7-c.t.T+c 

+ €  S t < T 

(4.96) 

for which the instantaneous frequency will be made continuous by vir- 
tue of a linear transition during the interval,   T/2-c<t<T/2 + €, 
with 

0< ■=« 1 
T 

(4.97) 

The constants ci0 are,  again,   supposed to be chosen so that <|)a(t) and 
«t)b(t) are continuous.   In the case of <t)b(t),   the imposition of continuity 
in frequency yields 

<*»* i; [**(■% +*) -Ml"€)] (4.98) 

The constants CJJ.  CJJ are chosen so that the degenerate (linear FM) 
side lobes corresponding to ^n and «frjj have opposite slopes,  and the 
remaining side lobe for 4)a(t) is displaced beyond +lß|m: 

eis > 0,     C-E < 0, -C' \ß (4.99) 

For definiteness,  we also take |c 12 < lc 321 The resulting ambiguity 
diagram for (|>a(t) is sketched in Fig. 10; as before,   the linear FM side 
lobes are indicated by the dashed lines. 

The labeling,   {\AT)  and g^r),  of the terminal curves employed in 
this example means that the associated phase function is 4»^,  with i < j, 
and chat this is the k*" time Oj. has occurred as T -* T from T = 0 + .    The 
functions i^hr) correspond to the lower,  and the functions gjj (T) to the 
upper,  limits of the integrals with which they are connected. 
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FIG. 10. Ambiguity Diagram for the Modulation «a(t), Eq. 4.9S, and the Conditions (4.99). 

With the conditions (4.99) supplemented by Eq.4.98, we obtain for <|)b(t) 
the side lobes sketched in Parts a and b of Fig. 11.    Comparison of this 
figure with Fig. 10 shows that the replacing of the frequency jump at 
t = T/2 by a linear transition has had the undesirable result of generat- 
ing additional side lobes (the linear FM lobe 4>22 ^n Part b 0^ Fig. II, and 
both of the side lobes in the two parts of Fig. 11).   portions of which lie 
within the domain of expected values of T and ß.   However,  under 
Eq. 4.97,   and to within the SPA,  contributions to IX(T,   ß)| of these ad- 
ditional side lobes will be small compared to lx(0, 0) I ,  as will now be 
shown. 
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For the side lobes ♦„ and *2Jwe have,  using Eq. 4.98. 

a3»ia(t;T 
5tr 

±_ /T 
2c a -cia-cas=77(| + e)(cia-c3!) 

and by Eq. 3.17, 

(2c)1/s 

-TT^  
ia       (i'+€) <ci2 -C38) 

(18). 

,1/3 
A(t^2;;T) 

IWT.ß) SS 
(Zf) ,1/2 

/T \1/2 

(■| - c)     (cia - ca») 

AU^^T) 

,1/2 

where the stationary points are given by 

(4.100) 

(4.101) 

.da) 

(1+ €)(Cl2 " C:s) 

= |-T+0(^).   0<T^+€ 
T 
2 

and 

t(33)   = 

(l+€)(l.c)(c3i-c18) + (c3.r+^2c; 

(I- e)(c33 - cx8) 

T 
2 

(4.102) 

+ 0^).   0<T4+€        (4.103) 

For the displaced side lobe *l3. we have 

36 

dr 
cxs - cae 

I^T'^I'lc-'c,^^"3'^ (4.104) 

!■ ■IIIIIM 



^^^■1 

. 
. • ■ 

and 

ta3) .carHl i zc^r'^T (4.105) 

From Part b of Fig. 11 we find (by requiring the Ordinate ß to lie within 
the shaded region ^3) that 

T 
2 r' + ofe)   *t$13)*Y+0(T)    to* ze *'r'*f+€     (4.106) 

and that 

0 s t(j13) 5 T - T'  for   ^ + c s T' ^ T (4.107) 

..(12) It is now shown that if T and tj      are prescribed according to Eq. 4.102, 
(13) then a ij      and a r' satisfying Eq. 4.106 can be found such that 

.(12) (13).,.'» Aa^THAlt^r') (4.108) 

We use the continuity of a(t) and work only to within terms which are 
0(€/T).   By doing the latter,   small areas of the side lobes are excluded; 
these can be taken into account by a continuity argument.   We have 

A(tiia>;r) = a(t<la>)a(t<l8> + r) « a(^ - r) a (^) , 0 < T < f 

Since a(t) is continuous and vanishes for t > T,  there exists a T, 
0 < T < T/2,   such that 

A(tS«>;T) = a(X + f) a fl) .   0 < f < I (4.109) 
r 

Now,  Eq. 4.106 is satisfied by t-1^ = T/2 and T' = T,   and for these 
values we obtain Eq. 4.108.    The function A(t|23) ; T),  where t(

j
23) and T 

satisfy Eq. 4.103,   is given by 

A(tf 3)
;T) = a(tf 3))a(t(J

33) + T) « a (|) a (| + t) ,  0 < T < I -i 
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Upon comparing this with Eq. 4.109,  it is seen that 

A(tf3>;T)=A(t<13V) (4.110) 

for t-,3) = T/2 and T' = T.    Next,   the approximations in Eq. 4.108 and 
4.110 are used in Eq. 4.100 and 4.101,  thus arriving at 

'IXia(T,/J)| «2(^)1/S|xi3(T'(/3')| 

lx83(T,0)l«2(^)I/a|xi3(r',0')l 

by way of Eq. 4.104.    Finally,   we employ the general and exact rela- 
tionship. 

to obtain 

\(T',ß')\   S   ^(O.O) 

(-\ 1/2 
fl    lx(o,o) 

(4.111) 

l\3(r'^l^2fe)1/a|X(0, 0) (4.112) 

as claimed. 

The demonstration that IX22(T»   ß)l<<lx(0»   0)1 follows along similar 
lines.   Application of Erdelyi's theorem to 

X11(T',fl') = /T/JWA(.iT').J-W"',i"-',,dt 
11 -'0 

i   ; 
i 

and 

gives 
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and 

I^M^i^FTH^d-—)+A8^-<;T) 

- 2A(| + € - T;T)A(^ - C;T)  COS ZtrCcT + fl)(2€ -T) 
* 

0L(2ircaa)
2. 

where 

and 

0<T'*^-€.   #*<**' 
(4.113) 

0<T < 2€,  /3 ^ caaT 

Upon using Eq. 4.97.  4.114. and the second of Eq. 4.98. we obtain 

Isinir (CMT +/3)(2c -T)| 

(4.114) 

4a' (f) 
1 ffUc» - cl2)T + —^| 

4a: (?) 
^ Tirl(caB - cxa^ +-=rßl 

. 

- 

and 

IX'TT'^'VI    T ni' 

8.(1)1^^1 

a(|-T')l(ca.-cl,)r+f »I 

Given T and ß,  it is always possible to find a T' and a ß'  satisfying 
(4.113) such that the quantity within the braces is unity.   Hence« by 

means of Eq. 4.111.  we arrive at 

\\JJ,ß)\ * ^V^l 1X(0.0)|*^1X(0.0)| (4.115) 

as was to be shown. 

Phase modulations of the sort considered in this and the previous 
example have also been discussed,  in a different way. by Rihaczek and 

Mitchell (Ref. 18). 
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5.   SUMMARY AND DISCUSSION OF RESULTS 

It has been shown that the stationary phase approximation (SPA) of 
Woodward's tirae-frequency correlation function X{T,  &),  Eq.l.li  can 
be elaborated upon so as to yield inequalities (or,  alternatively, fami- 
lies of curves) specifying those domains of the time-frequency (T - ß) 
plane on which the ambiguity function lx(Tf  ß)|2 is relatively large 
(side lobes).     The elaboration consisted of working a condition satis- 
fied by the stationary points for large IX(T,  ß)l2 into one satisfied by 
P and T.    A brief,  general discussion was given in Section 3,   and some 
examples were worked in Section 4.    The method fails in some small 
neighborhood of the origin (T = 0 = ß),  but the behavior of IX(T,  ß)|2 

there can, in principle,  be determined by means of a Taylor series 
expansion.   Although the SPA theorems which are usually used do not 
apply along the ß-axis,  a more general theorem given by Erdelyi 
(Ref. 16 and Section 2) can be used to study the ambiguity function 
there; alternatively,  Eq. 3,24 can be used„   For modulations such that 
the amplitude modulation a(t) varies slowly compared to the phase 
modulation <j)(t)—except,  possibly,   at the beginning and end of the 
pulse—this technique should be a useful tool for signal design. 

In the examples,  we considered first those phase modulations which 
satisfy the hypothesis of the SPA theorems usually employed (Ref. 15 
and Section 2): i. e.,  functions (|>(t) which are analytic over the duration 
T of the signal.    The same was assumed concerning the amplitude 
modulation a(t).    The weaker hypothesis of Erdelyi's theorem was thus 
satisfied at the same time.   It was found that in these cases there were 
two side lobes (one obtainable from the other by inversion in the origin) 
connected to the origin and extending outward to T = ±T. 

We then considered phase modulations <j)(t) in the form of poly- 
nomials which satisfied the theorems only piecewise,  with a(t) the 
same as before,  and it was found that (1) some of the side lobes could 
be displaced outward along the ß-axis beyond the largest expected val- 
ues of ß,  ±|ß|ml  and that (2) the remaining side lobes could be distrib- 
uted in azimuth about the origin.    In connection with Item 1,  finite 
discontinuities in <J)(t) were found to be irrelevant,  and finite discon- 
tinuities in <j>'(t),  the instantaneous frequency,  were found to be essen- 
tial.    Because of the volume invariancc property of IX(T,  ß)|2,   Eq. 4.64, 
signals of this sort raise the hope of approximating a qualitatively ideal 
ambiguity function,   i. e. ,   one having a sharply peaked central lobe and 
very low values over the remainder of the rectangle bounding the 
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expected values of T and ß.    Although the existence of finite jumps in 
the instantaneous frequency 6'(t) does not seem to stand in contradic- 
tion to fundamental reatrictions upon the signal, it is possible that 
they are difficult to realize in practice.   For this reason, we con- 
sidered in the last example a phase modulation such that the jump was 
replaced by a linear transition occurring in an interval c.   We found 
that the contributions to IX(T,  ß)l2 of the additional side lobes generated 
by the transition were small compared to lx(0,  0)1 ,  provided that 
€ « T. 

In cases in which a large portion of the ambiguity volume corre- 
sponding to a given signal already lies beyond ±lßlm, not much will be 
gained by the techniques of Examples 4, 5, and 6 unless the signal 
duration T is divided into many (equal) parts.    The result of division 
will be a signal which is,  perhaps, undesirably complicated,  or whicu 
has too large a bandwidth.   Let us recall that Eq. 1.1 rests upon the 
narrow-band approximation,  and that this approximation may be a 
poor one for modulations such that the SPA is valid. 

Finally,  it is pointed out that specific modulations that are    rrived 
at by means of the methods described here are best considered as 
candidate signals, because we have made use, both explicitly and im- 
plicitly,  of just the leading term of an asymptotic expansion.    While 
asymptotic expansions can yield very accurate results,  it is necessary 
to verify their accuracy by looking at more terms in Eq. 2.7 and 2.8. 
Alternatively,   one can resort to numerical integration of Eq. 1.1,  or, 
possibly,  to analog simulation of the matched filter which is charac- 
terized by X(T,  ß). 
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